3.2.38 \(\int \frac {\sqrt {d+e x^2} (a+b \text {sech}^{-1}(c x))}{x^4} \, dx\) [138]

3.2.38.1 Optimal result
3.2.38.2 Mathematica [C] (verified)
3.2.38.3 Rubi [A] (verified)
3.2.38.4 Maple [F]
3.2.38.5 Fricas [A] (verification not implemented)
3.2.38.6 Sympy [F]
3.2.38.7 Maxima [F(-2)]
3.2.38.8 Giac [F]
3.2.38.9 Mupad [F(-1)]

3.2.38.1 Optimal result

Integrand size = 23, antiderivative size = 312 \[ \int \frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{x^4} \, dx=\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{9 x^3}+\frac {2 b \left (c^2 d+2 e\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{9 d x}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 d x^3}+\frac {2 b c \left (c^2 d+2 e\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {d+e x^2} E\left (\arcsin (c x)\left |-\frac {e}{c^2 d}\right .\right )}{9 d \sqrt {1+\frac {e x^2}{d}}}-\frac {b \left (c^2 d+e\right ) \left (2 c^2 d+3 e\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1+\frac {e x^2}{d}} \operatorname {EllipticF}\left (\arcsin (c x),-\frac {e}{c^2 d}\right )}{9 c d \sqrt {d+e x^2}} \]

output
-1/3*(e*x^2+d)^(3/2)*(a+b*arcsech(c*x))/d/x^3+1/9*b*(1/(c*x+1))^(1/2)*(c*x 
+1)^(1/2)*(-c^2*x^2+1)^(1/2)*(e*x^2+d)^(1/2)/x^3+2/9*b*(c^2*d+2*e)*(1/(c*x 
+1))^(1/2)*(c*x+1)^(1/2)*(-c^2*x^2+1)^(1/2)*(e*x^2+d)^(1/2)/d/x+2/9*b*c*(c 
^2*d+2*e)*EllipticE(c*x,(-e/c^2/d)^(1/2))*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)* 
(e*x^2+d)^(1/2)/d/(1+e*x^2/d)^(1/2)-1/9*b*(c^2*d+e)*(2*c^2*d+3*e)*Elliptic 
F(c*x,(-e/c^2/d)^(1/2))*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)*(1+e*x^2/d)^(1/2)/ 
c/d/(e*x^2+d)^(1/2)
 
3.2.38.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 25.18 (sec) , antiderivative size = 576, normalized size of antiderivative = 1.85 \[ \int \frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{x^4} \, dx=\frac {\frac {b \sqrt {\frac {1-c x}{1+c x}} \left (d+e x^2\right )}{x^3}+\frac {b c \sqrt {\frac {1-c x}{1+c x}} \left (d+e x^2\right )}{x^2}+\frac {2 b \left (c^2 d+2 e\right ) \sqrt {\frac {1-c x}{1+c x}} \left (d+e x^2\right )}{d x}-\frac {3 a \left (d+e x^2\right )^2}{d x^3}-\frac {3 b \left (d+e x^2\right )^2 \text {sech}^{-1}(c x)}{d x^3}-\frac {2 i b \left (c \sqrt {d}-i \sqrt {e}\right )^2 \sqrt {\frac {1-c x}{1+c x}} (1+c x) \sqrt {\frac {c \left (\sqrt {d}-i \sqrt {e} x\right )}{\left (c \sqrt {d}-i \sqrt {e}\right ) (1+c x)}} \sqrt {\frac {c \left (\sqrt {d}+i \sqrt {e} x\right )}{\left (c \sqrt {d}+i \sqrt {e}\right ) (1+c x)}} \left (\left (c^2 d+2 e\right ) E\left (i \text {arcsinh}\left (\sqrt {\frac {\left (c^2 d+e\right ) (1-c x)}{\left (c \sqrt {d}+i \sqrt {e}\right )^2 (1+c x)}}\right )|\frac {\left (c \sqrt {d}+i \sqrt {e}\right )^2}{\left (c \sqrt {d}-i \sqrt {e}\right )^2}\right )+\left (2 i c \sqrt {d}-3 \sqrt {e}\right ) \sqrt {e} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {\left (c^2 d+e\right ) (1-c x)}{\left (c \sqrt {d}+i \sqrt {e}\right )^2 (1+c x)}}\right ),\frac {\left (c \sqrt {d}+i \sqrt {e}\right )^2}{\left (c \sqrt {d}-i \sqrt {e}\right )^2}\right )\right )}{c d \sqrt {-\frac {\left (c \sqrt {d}-i \sqrt {e}\right ) (-1+c x)}{\left (c \sqrt {d}+i \sqrt {e}\right ) (1+c x)}}}}{9 \sqrt {d+e x^2}} \]

input
Integrate[(Sqrt[d + e*x^2]*(a + b*ArcSech[c*x]))/x^4,x]
 
output
((b*Sqrt[(1 - c*x)/(1 + c*x)]*(d + e*x^2))/x^3 + (b*c*Sqrt[(1 - c*x)/(1 + 
c*x)]*(d + e*x^2))/x^2 + (2*b*(c^2*d + 2*e)*Sqrt[(1 - c*x)/(1 + c*x)]*(d + 
 e*x^2))/(d*x) - (3*a*(d + e*x^2)^2)/(d*x^3) - (3*b*(d + e*x^2)^2*ArcSech[ 
c*x])/(d*x^3) - ((2*I)*b*(c*Sqrt[d] - I*Sqrt[e])^2*Sqrt[(1 - c*x)/(1 + c*x 
)]*(1 + c*x)*Sqrt[(c*(Sqrt[d] - I*Sqrt[e]*x))/((c*Sqrt[d] - I*Sqrt[e])*(1 
+ c*x))]*Sqrt[(c*(Sqrt[d] + I*Sqrt[e]*x))/((c*Sqrt[d] + I*Sqrt[e])*(1 + c* 
x))]*((c^2*d + 2*e)*EllipticE[I*ArcSinh[Sqrt[((c^2*d + e)*(1 - c*x))/((c*S 
qrt[d] + I*Sqrt[e])^2*(1 + c*x))]], (c*Sqrt[d] + I*Sqrt[e])^2/(c*Sqrt[d] - 
 I*Sqrt[e])^2] + ((2*I)*c*Sqrt[d] - 3*Sqrt[e])*Sqrt[e]*EllipticF[I*ArcSinh 
[Sqrt[((c^2*d + e)*(1 - c*x))/((c*Sqrt[d] + I*Sqrt[e])^2*(1 + c*x))]], (c* 
Sqrt[d] + I*Sqrt[e])^2/(c*Sqrt[d] - I*Sqrt[e])^2]))/(c*d*Sqrt[-(((c*Sqrt[d 
] - I*Sqrt[e])*(-1 + c*x))/((c*Sqrt[d] + I*Sqrt[e])*(1 + c*x)))]))/(9*Sqrt 
[d + e*x^2])
 
3.2.38.3 Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 256, normalized size of antiderivative = 0.82, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {6855, 27, 376, 445, 25, 27, 399, 323, 321, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{x^4} \, dx\)

\(\Big \downarrow \) 6855

\(\displaystyle b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \int -\frac {\left (e x^2+d\right )^{3/2}}{3 d x^4 \sqrt {1-c^2 x^2}}dx-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 d x^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \int \frac {\left (e x^2+d\right )^{3/2}}{x^4 \sqrt {1-c^2 x^2}}dx}{3 d}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 d x^3}\)

\(\Big \downarrow \) 376

\(\displaystyle -\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \left (\frac {1}{3} \int \frac {e \left (d c^2+3 e\right ) x^2+2 d \left (d c^2+2 e\right )}{x^2 \sqrt {1-c^2 x^2} \sqrt {e x^2+d}}dx-\frac {d \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{3 x^3}\right )}{3 d}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 d x^3}\)

\(\Big \downarrow \) 445

\(\displaystyle -\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \left (\frac {1}{3} \left (-\frac {\int -\frac {d e \left (-2 \left (d c^2+2 e\right ) x^2 c^2+d c^2+3 e\right )}{\sqrt {1-c^2 x^2} \sqrt {e x^2+d}}dx}{d}-\frac {2 \sqrt {1-c^2 x^2} \left (c^2 d+2 e\right ) \sqrt {d+e x^2}}{x}\right )-\frac {d \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{3 x^3}\right )}{3 d}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 d x^3}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \left (\frac {1}{3} \left (\frac {\int \frac {d e \left (-2 \left (d c^2+2 e\right ) x^2 c^2+d c^2+3 e\right )}{\sqrt {1-c^2 x^2} \sqrt {e x^2+d}}dx}{d}-\frac {2 \sqrt {1-c^2 x^2} \left (c^2 d+2 e\right ) \sqrt {d+e x^2}}{x}\right )-\frac {d \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{3 x^3}\right )}{3 d}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 d x^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \left (\frac {1}{3} \left (e \int \frac {-2 \left (d c^2+2 e\right ) x^2 c^2+d c^2+3 e}{\sqrt {1-c^2 x^2} \sqrt {e x^2+d}}dx-\frac {2 \sqrt {1-c^2 x^2} \left (c^2 d+2 e\right ) \sqrt {d+e x^2}}{x}\right )-\frac {d \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{3 x^3}\right )}{3 d}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 d x^3}\)

\(\Big \downarrow \) 399

\(\displaystyle -\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \left (\frac {1}{3} \left (e \left (\frac {\left (c^2 d+e\right ) \left (2 c^2 d+3 e\right ) \int \frac {1}{\sqrt {1-c^2 x^2} \sqrt {e x^2+d}}dx}{e}-\frac {2 c^2 \left (c^2 d+2 e\right ) \int \frac {\sqrt {e x^2+d}}{\sqrt {1-c^2 x^2}}dx}{e}\right )-\frac {2 \sqrt {1-c^2 x^2} \left (c^2 d+2 e\right ) \sqrt {d+e x^2}}{x}\right )-\frac {d \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{3 x^3}\right )}{3 d}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 d x^3}\)

\(\Big \downarrow \) 323

\(\displaystyle -\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \left (\frac {1}{3} \left (e \left (\frac {\left (c^2 d+e\right ) \left (2 c^2 d+3 e\right ) \sqrt {\frac {e x^2}{d}+1} \int \frac {1}{\sqrt {1-c^2 x^2} \sqrt {\frac {e x^2}{d}+1}}dx}{e \sqrt {d+e x^2}}-\frac {2 c^2 \left (c^2 d+2 e\right ) \int \frac {\sqrt {e x^2+d}}{\sqrt {1-c^2 x^2}}dx}{e}\right )-\frac {2 \sqrt {1-c^2 x^2} \left (c^2 d+2 e\right ) \sqrt {d+e x^2}}{x}\right )-\frac {d \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{3 x^3}\right )}{3 d}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 d x^3}\)

\(\Big \downarrow \) 321

\(\displaystyle -\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \left (\frac {1}{3} \left (e \left (\frac {\left (c^2 d+e\right ) \left (2 c^2 d+3 e\right ) \sqrt {\frac {e x^2}{d}+1} \operatorname {EllipticF}\left (\arcsin (c x),-\frac {e}{c^2 d}\right )}{c e \sqrt {d+e x^2}}-\frac {2 c^2 \left (c^2 d+2 e\right ) \int \frac {\sqrt {e x^2+d}}{\sqrt {1-c^2 x^2}}dx}{e}\right )-\frac {2 \sqrt {1-c^2 x^2} \left (c^2 d+2 e\right ) \sqrt {d+e x^2}}{x}\right )-\frac {d \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{3 x^3}\right )}{3 d}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 d x^3}\)

\(\Big \downarrow \) 330

\(\displaystyle -\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \left (\frac {1}{3} \left (e \left (\frac {\left (c^2 d+e\right ) \left (2 c^2 d+3 e\right ) \sqrt {\frac {e x^2}{d}+1} \operatorname {EllipticF}\left (\arcsin (c x),-\frac {e}{c^2 d}\right )}{c e \sqrt {d+e x^2}}-\frac {2 c^2 \left (c^2 d+2 e\right ) \sqrt {d+e x^2} \int \frac {\sqrt {\frac {e x^2}{d}+1}}{\sqrt {1-c^2 x^2}}dx}{e \sqrt {\frac {e x^2}{d}+1}}\right )-\frac {2 \sqrt {1-c^2 x^2} \left (c^2 d+2 e\right ) \sqrt {d+e x^2}}{x}\right )-\frac {d \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{3 x^3}\right )}{3 d}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 d x^3}\)

\(\Big \downarrow \) 327

\(\displaystyle -\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{3 d x^3}-\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \left (\frac {1}{3} \left (e \left (\frac {\left (c^2 d+e\right ) \left (2 c^2 d+3 e\right ) \sqrt {\frac {e x^2}{d}+1} \operatorname {EllipticF}\left (\arcsin (c x),-\frac {e}{c^2 d}\right )}{c e \sqrt {d+e x^2}}-\frac {2 c \left (c^2 d+2 e\right ) \sqrt {d+e x^2} E\left (\arcsin (c x)\left |-\frac {e}{c^2 d}\right .\right )}{e \sqrt {\frac {e x^2}{d}+1}}\right )-\frac {2 \sqrt {1-c^2 x^2} \left (c^2 d+2 e\right ) \sqrt {d+e x^2}}{x}\right )-\frac {d \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{3 x^3}\right )}{3 d}\)

input
Int[(Sqrt[d + e*x^2]*(a + b*ArcSech[c*x]))/x^4,x]
 
output
-1/3*((d + e*x^2)^(3/2)*(a + b*ArcSech[c*x]))/(d*x^3) - (b*Sqrt[(1 + c*x)^ 
(-1)]*Sqrt[1 + c*x]*(-1/3*(d*Sqrt[1 - c^2*x^2]*Sqrt[d + e*x^2])/x^3 + ((-2 
*(c^2*d + 2*e)*Sqrt[1 - c^2*x^2]*Sqrt[d + e*x^2])/x + e*((-2*c*(c^2*d + 2* 
e)*Sqrt[d + e*x^2]*EllipticE[ArcSin[c*x], -(e/(c^2*d))])/(e*Sqrt[1 + (e*x^ 
2)/d]) + ((c^2*d + e)*(2*c^2*d + 3*e)*Sqrt[1 + (e*x^2)/d]*EllipticF[ArcSin 
[c*x], -(e/(c^2*d))])/(c*e*Sqrt[d + e*x^2])))/3))/(3*d)
 

3.2.38.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 376
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> Simp[c*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1 
)/(a*e*(m + 1))), x] - Simp[1/(a*e^2*(m + 1))   Int[(e*x)^(m + 2)*(a + b*x^ 
2)^p*(c + d*x^2)^(q - 2)*Simp[c*(b*c - a*d)*(m + 1) + 2*c*(b*c*(p + 1) + a* 
d*(q - 1)) + d*((b*c - a*d)*(m + 1) + 2*b*c*(p + q))*x^2, x], x], x] /; Fre 
eQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && LtQ[m, -1] & 
& IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 445
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_ 
.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^2)^(p 
+ 1)*((c + d*x^2)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^2*(m + 1)) 
 Int[(g*x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*f*c*(m + 1) - e*(b*c 
+ a*d)*(m + 2 + 1) - e*2*(b*c*p + a*d*q) - b*e*d*(m + 2*(p + q + 2) + 1)*x^ 
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && LtQ[m, -1]
 

rule 6855
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*( 
x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Si 
mp[(a + b*ArcSech[c*x])   u, x] + Simp[b*Sqrt[1 + c*x]*Sqrt[1/(1 + c*x)] 
Int[SimplifyIntegrand[u/(x*Sqrt[1 - c*x]*Sqrt[1 + c*x]), x], x], x]] /; Fre 
eQ[{a, b, c, d, e, f, m, p}, x] && ((IGtQ[p, 0] &&  !(ILtQ[(m - 1)/2, 0] && 
 GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ[m + 2 
*p + 3, 0])) || (ILtQ[(m + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))
 
3.2.38.4 Maple [F]

\[\int \frac {\left (a +b \,\operatorname {arcsech}\left (c x \right )\right ) \sqrt {e \,x^{2}+d}}{x^{4}}d x\]

input
int((a+b*arcsech(c*x))*(e*x^2+d)^(1/2)/x^4,x)
 
output
int((a+b*arcsech(c*x))*(e*x^2+d)^(1/2)/x^4,x)
 
3.2.38.5 Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 242, normalized size of antiderivative = 0.78 \[ \int \frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{x^4} \, dx=-\frac {3 \, {\left (b c d e x^{2} + b c d^{2}\right )} \sqrt {e x^{2} + d} \log \left (\frac {c x \sqrt {-\frac {c^{2} x^{2} - 1}{c^{2} x^{2}}} + 1}{c x}\right ) + {\left (3 \, a c d e x^{2} + 3 \, a c d^{2} - {\left (b c^{2} d^{2} x + 2 \, {\left (b c^{4} d^{2} + 2 \, b c^{2} d e\right )} x^{3}\right )} \sqrt {-\frac {c^{2} x^{2} - 1}{c^{2} x^{2}}}\right )} \sqrt {e x^{2} + d} - {\left (2 \, {\left (b c^{6} d^{2} + 2 \, b c^{4} d e\right )} x^{3} E(\arcsin \left (c x\right )\,|\,-\frac {e}{c^{2} d}) - {\left (2 \, b c^{6} d^{2} + {\left (4 \, b c^{4} + b c^{2}\right )} d e + 3 \, b e^{2}\right )} x^{3} F(\arcsin \left (c x\right )\,|\,-\frac {e}{c^{2} d})\right )} \sqrt {d}}{9 \, c d^{2} x^{3}} \]

input
integrate((a+b*arcsech(c*x))*(e*x^2+d)^(1/2)/x^4,x, algorithm="fricas")
 
output
-1/9*(3*(b*c*d*e*x^2 + b*c*d^2)*sqrt(e*x^2 + d)*log((c*x*sqrt(-(c^2*x^2 - 
1)/(c^2*x^2)) + 1)/(c*x)) + (3*a*c*d*e*x^2 + 3*a*c*d^2 - (b*c^2*d^2*x + 2* 
(b*c^4*d^2 + 2*b*c^2*d*e)*x^3)*sqrt(-(c^2*x^2 - 1)/(c^2*x^2)))*sqrt(e*x^2 
+ d) - (2*(b*c^6*d^2 + 2*b*c^4*d*e)*x^3*elliptic_e(arcsin(c*x), -e/(c^2*d) 
) - (2*b*c^6*d^2 + (4*b*c^4 + b*c^2)*d*e + 3*b*e^2)*x^3*elliptic_f(arcsin( 
c*x), -e/(c^2*d)))*sqrt(d))/(c*d^2*x^3)
 
3.2.38.6 Sympy [F]

\[ \int \frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{x^4} \, dx=\int \frac {\left (a + b \operatorname {asech}{\left (c x \right )}\right ) \sqrt {d + e x^{2}}}{x^{4}}\, dx \]

input
integrate((a+b*asech(c*x))*(e*x**2+d)**(1/2)/x**4,x)
 
output
Integral((a + b*asech(c*x))*sqrt(d + e*x**2)/x**4, x)
 
3.2.38.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{x^4} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+b*arcsech(c*x))*(e*x^2+d)^(1/2)/x^4,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.2.38.8 Giac [F]

\[ \int \frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{x^4} \, dx=\int { \frac {\sqrt {e x^{2} + d} {\left (b \operatorname {arsech}\left (c x\right ) + a\right )}}{x^{4}} \,d x } \]

input
integrate((a+b*arcsech(c*x))*(e*x^2+d)^(1/2)/x^4,x, algorithm="giac")
 
output
integrate(sqrt(e*x^2 + d)*(b*arcsech(c*x) + a)/x^4, x)
 
3.2.38.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{x^4} \, dx=\int \frac {\sqrt {e\,x^2+d}\,\left (a+b\,\mathrm {acosh}\left (\frac {1}{c\,x}\right )\right )}{x^4} \,d x \]

input
int(((d + e*x^2)^(1/2)*(a + b*acosh(1/(c*x))))/x^4,x)
 
output
int(((d + e*x^2)^(1/2)*(a + b*acosh(1/(c*x))))/x^4, x)